If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+48=14t
We move all terms to the left:
t^2+48-(14t)=0
a = 1; b = -14; c = +48;
Δ = b2-4ac
Δ = -142-4·1·48
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2}{2*1}=\frac{12}{2} =6 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2}{2*1}=\frac{16}{2} =8 $
| 6.4=0.8m | | 3=1.5625v-v | | -x+9=3x+1 | | 4-9x=-104 | | -75=-5(-6+n) | | 13s=30-s^2 | | k/4+5=-6 | | m/3-4=0 | | 1/t+7=-3+2/t | | 8p-2=14 | | r^2+10r+4=5r+10 | | 4x=3x–5 | | 3(3x-6)=5(x+6) | | 5b-2=2b=+7 | | -8v-12=60 | | 9+6p=27 | | 37=-3+10x | | -161=-7(4+r) | | 22=138/x | | 2x–5=x+7 | | 7/10=49/n | | p^2+10p-10=p | | 7x+12=11x-48 | | -7(k+8)-5=3k-10(k+2) | | 3x=27000 | | 2x-16=8+12x | | -3(x-8)=15+6x | | 5/8v=6/5 | | 15x-62=5x-12 | | 6x-1=3x±5 | | -10n+11=10-10n+1 | | 4-4x=-16-8x |